Saturday, 15 November 2014

Connectivity in the stadiums

I have recently been observing a lots of discussions around connectivity in the stadiums. I have used this picture above a few times to show different solutions available in different situations. You can see that in theory Wi-Fi, DAS, Micro and Pico would all be suitable for the connectivity in stadiums. In practice this is generally limited to DAS and Wi-Fi.

ThinkSmallCell have recently written an article on the stadium Wi-Fi experience of The Cloud here. Some very interesting choices were taken to keep things simple:

For the main stadium bowl, The Cloud designed for 50% concurrent access for the maximum 30,000 crowd, connecting 80 Wi-Fi access points using 1km of fibre and 9km of CAT6 ethernet cable.

Each access point can handle up to 250 concurrent users. Tightly focussed beams were used to segregate seating blocks, splitting these into distinct coverage sectors.

To simplify the design, the older 802.11b standard wasn't used/supported, VoIP was blocked and a maximum of 3 SSIDs assigned. Unlike a cellular system, there's no handoff as you move around the stadium – you'd need to reconnect and create another session. During peak usage, almost everyone is sitting down rather than moving about (if you ignore those jumping up and down on their seats).

Both Wi-Fi spectrum bands at 2.4GHz and 5GHz were used, with devices capable of the higher frequency prioritised to use it. 56% of clients used the 5GHz band, which has much more spectrum and many more channels available. The different propagation characteristics mean there are different coverage footprints, so planners are actually designing two networks rather than one.

The side lobes on the 5GHz coverage footprint were massive, limiting the number of Wi-Fi access points that could be deployed.

You can read the complete article on the ThinkSmallCell website here.

A question some people often ask is why bother with connectivity in the stadiums. There are many reasons and personally, I would rather have connectivity than don't, even if I am not going to use it.


Real Wireless has done substantial amount of work in this area and a slide from their recent presentation discusses the benefits for various parties very well. You can read their opinion on this topic on their website here.

No discussion on Stadium connectivity would be complete without mentioning the US operator AT&T. They regularly publish statistics and details of connectivity in various sports venues on their website here. A recent report from their new site on DAS connectivity in various stadiums as follows:

  • So far this season, there have been 119 pro football games and 214 college football games played across more than 75 different venues where we provide in-venue coverage via Distributed Antenna Systems (DAS). 
  • In total, across these 333 games our customers have used more than 104.9 Terabytes of mobile data on our in-venue cellular networks. That’s the same as 104,913 Gigabytes. Or more simply put, it is equivalent to more than 300M social media posts with photos. 
  • At this point in the year, pro football fans are edging college fans in average data usage per game by a 342GB to 293GB margin. Or a difference equivalent to about 140K more social media posts with photos per game on average.

Another recent report from the AT&T part in San Francisco where both Wi-Fi and DAS are present as follows:
Here are some of the record-breaking numbers we saw on our venue-specific mobile network at AT&T Park from the Giants’ three home games during the World Series:
  • Fans used more than 477GB of data on the AT&T cellular network during the game on 10/25. This is equivalent to more than 1.36M social media post with photos.
    • This marked the highest single game total for cellular data usage at AT&T Park in ballpark history.
  • Fans used an average of approximately 447GB of data per game over the weekend on the AT&T cellular network. This is equivalent to more than 1.27M social media post with photos.
    • It’s an increase of approximately 29% in cellular data usage compared to the average game during the League Championship series vs. St. Louis.
    • It’s an increase of approximately 109% in cellular data usage compared to the average game during the final home series of the regular season vs. San Diego (9/25-9/28).
  • The peak hour of data usage during three home games was on 10/25 was from 5-6pm PT, the hour in which the first pitch occurred. In this hour more than 83GB of data crossed our venue-specific cellular network.
  • On our AT&T Wi-Fi network we saw more than 1,626GB of data move across our network during the game on 10/25.
    • This is the highest single game Wi-Fi total in the history of AT&T Park.
    • 1,626GB is equivalent to more than 4.65M social media post with photos.
    • This showed an increase in Wi-Fi usage of approximately 302% compared to the average game during the 2012 World Series.
    • This showed an increase in Wi-Fi usage of approximately 163% compared to the average 2014 regular season game at AT&T Park.
    • This showed an increase in Wi-Fi usage of approximately 29% compared to the average game of the League Championship series vs. St. Louis.
  • The collective data usage equaled approximately 2.1TB of data across both our cellular and Wi-Fi networks at AT&T Park during the game on 10/25.
    • This marked the highest single game total for collective data usage (cellular and Wi-Fi) in AT&T Park history.
    • 2.1TB is equivalent to more than 6M social media post with photos.
Note: All cellular data is specific to only AT&T customers using the DAS network at AT&T Park.
AT&T DAS guru Paula Doublin was one of the most memorable speakers at this year’s HetNet Expo. The company’s AVP for antenna solutions, DAS and small cells did not shy away from questions about AT&T’s budget for heterogeneous networks, nor did she sugar coat the outlook for small cell deployments. A video of her presentation is embedded below and a writeup is available on RCR Wireless website here.




See Also:

Monday, 10 November 2014

Small Cells and/or WiFi - The confusion continues...

Its been an interesting last few weeks. Depending on which report you read, you will either come to the conclusion that 'WiFi will be killing off Small Cells' or 'Small Cells will be killing off WiFi'

First there was this report that "You might not need a mobile carrier by 2020". It makes this bold statement: In Europe, many cell phone owners have already ditched their wireless carrier. But Wi-Fi isn't quite widespread or robust enough for most Americans to completely ditch their wireless carrier just yet. In all honesty, I have never come across anyone that has ditched their mobile network operator and now relies entirely on Wi-Fi. I certainly know of people who now don't even bother switching on their WiFi because their cellular coverage is extremely good and have flat pricing.

Joe Madden, a respected analyst of small cells, recently said the following: "Even if we exclude homespot deployments, the number of Wi-Fi access points will reach the level of millions for cable operators and public venues during 2015, outstripping the capacity of new LTE base stations. Several large mobile operators have made a gigantic blunder, by ignoring the opportunity to deploy Wi-Fi or utilize Hotspot 2.0 –so cable operators and other service providers are jumping on the opportunity. Homespots add another dimension, with massive crowdsourcing of capacity. The total Wi-Fi capacity deployed by service providers worldwide could match the 'data tsunami' in terms of raw capacity over the next five years, although of course there are obvious limitations in mobility and QoS."

While you may be thinking Wi-Fi '1' and Small Cells '0' a thing to remember is that WiFi still has some way to go to sort out the security stuff. This article highlights how easy it is spoof a WiFi AP, the one you have trusted in the past and easily access personal Info. I strongly suggest that you read this article. One may argue that some of these issues will be gone with HS2.0 and other new security mechanisms these problems will vanish. One has to remember though that since WiFi uses unlicensed bands, and since the technology has been around for ages, its easy to get cheap equipment and it may not exactly be illegal to have equipment running in this band.

Cellular on the other hand relies on licensed spectrum and has a very strong authentication mechanism which may get around such basic insecurity info (though to some extent this can be hacked, depending on operator policies on the UICC/SIM card).

Dr. Kim Larsen, recently did a presentation where he looked at the economics of Small Cell and WiFi and in what situations both of these make sense. His presentation is embedded below.



Some thoughts from Kim on his presentation on Twitter:

  • Most Smartphone based WiFi traffic happens at Home, believing this traffic is offloaded is rather foolish!
  • WiFi...Why & When to care (at least when you are an mobile operator)
  • Why do we like WiFi so much & why cellular have so many challenges matching consumer expectations!
  • WiFi has the consumer perception of being 1 Fast, 2 Almost Free & 3 Unlimited...Brilliant Branding!
  • Mobile Operator WiFi off-loading strategies should consider mitigating potential & substantial cellular revenue loss!
  • When WiFi makes the most sense for a Mobile Operator; 
    1. Cellular expansion options have been exhausted!
    2. you control fixed & mobile sides of the customer experience & value chain! 
    3. Competitive Pressures .. ultimately is likely to be a loss-loss scenario!

Monday, 3 November 2014

Dynamics of Change, panel discussion from #HetNet2014


A good panel discussion video from HetNet2014 conference. I think the image above would be useful for someone wanting a quick recap of the different types of small cells.

Barry McLaren of Ericsson, John Bramfeld of Advanced RF Technologies, Asad Vaince of Boingo Wireless, Mark Reynolds of the University of New Mexico and Jeffrey Funderburg of AT&T   talk rapid changes in the mobile broadband industry at the HetNet Expo 2014 (#HetNet2014).

Technology changes in the mobile broadband space are happening more rapidly than ever. Wireless service providers are rolling out LTE, with Advanced LTE and Voiceover LTE on the horizon. In parallel, 802.11a/c is being added to the Wi-Fi technology mix and Passpoint-certified devices could be game changers. This panel explores the perspectives from the wireless service provider, original equipment manufacturer, neutral-host provider, systems integrator and end user on how they are adapting—and getting ahead of—the rapid pace of change in the industry.

Questions discussed:
  • How does the latest upgrades impact what you do?
  • What do you envision 5G to be and will we realisitically see it?
  • Is 5G going to get rid of the problems thats keeping you awake in the night. Is it going to make things simpler?
  • How is HS2.0 and Passpoint, helping WiFi rollout and offloading?
  • Are the advances in WiFi going to make Small Cells irrelevant or are they going to work together?
  • What does the migration path look like for a move from CS Fallback to VoLTE with limited handsets available?
  • Is there a quality issue with VoWiFi?


Friday, 31 October 2014

Non-ideal backhaul for Small Cells

Recently I came across this Linkedin discussion on What is "non-ideal backhaul" so I thought it may be worth adding it to the blog. The simplest of explanation can be seen from the picture above that is extracted from 3GPP TR 36.932.

An ideal backhaul is defined as latency less than 2.5 microseconds and a throughput of upto 10Gbps. All other types of backhaul is non-ideal.

Another way of putting this is: If you look at the Release 12 study and technical report on Small Cell Enhancements, it is regarded as a backhaul that cannot carry a RRH to eNodeB link, which in turn has been interpreted as not meeting CPRI round trip and bandwidth requirements (via Kit Kilgour)

If you know anything additional, please feel free to add it in comments.

Sunday, 26 October 2014

In-building Wireless Solutions Webinar


Last month, David Chambers from ThinkSmallCell held a webinar exploring available In-building solutions and comparing the advantages and disadvantages of each solution, also looking at the approach taken by different vendors. Worth a look. The presentation and Youtube video are both embedded below.




Monday, 20 October 2014

Small Cells Equipment Magic Quadrant, by Gartner

Source: Gartner (October 2014)

Gartner has an excellent analysis of Small Cell equipment manufacturers with regards to their strengths and weaknesses. They have analysed the following 16 vendors:

Accelleran, Airspan, Airvana, Alcatel-Lucent, Argela, Cisco, Ericsson, Fujitsu, Huawei, ip.access, NEC, Nokia Networks, Ruckus Wireless, Samsung, SpiderCloud Wireless, ZTE

If interested, have a read here.

Friday, 10 October 2014

Small Cells: Interoperability and Plugfests for Multi-vendor HetNet's

Our recent Small Cells SIG in Cambridge Wireless was another full house with the topic under discussion being Small Cells Deployment: Whats the hold-up. One of the areas being tackled by Small Cell Forum is to have plugfests to identify the issues that are causing hold ups and fix them. There were two interesting presentations with interesting take on this topic. The first was by Neeraj Gupta and Kreso Bilan of NEC who are both very active in this interoperability and plugfests. Their presentation which doesnt need any explanation is embedded below:



The other presentation was by Nick Johnson of IP.Access who listed the problems and the source of the problems that gave rise to the interoperability issues and also gave a quick summary of what the plugfests achieved (see picture above). His slides are embedded below:



The conclusion of the event was that there are no issues or reasons for these hold-ups. The operators have been over cautious and preferred to play a waiting game but are now getting confidence and starting to deploy small cells. Some minor issues in interoperability revolves around X2 interface and SON but they should get ironed out in the couple plugfests planned for next year (see NEC slides).

Sunday, 28 September 2014

HetNet Strategies with Oi Brazil


Brazil has been in limelight since the beginning of the year. Initially, the focus was on how the FIFA World Cup may fail but later on for the way everything came together at the last minute and everything worked. From a technology point of view, WiFi was a big saviour in the stadiums, allowing good connectivity for everyone wishing to add the things they liked on social networks as soon as they can.


An example was this chart tweeted by Ruckus Wireless to proudly show what their achievement was with stadium WiFi.



Recently, Maravedis-rethink conducted a webinar with the Brazilian operator Oi, regarding their HetNet strategies. The video for the relevant part is embedded in the end. Two slides caught my attention. The first was about the different technologies and their concerns (above). For example for a HetNet to be successful, all components should synchronised and have a strict time accuracy requirements. The Backhaul & Fronthaul requirements are equally interesting for different cases.



The second interesting slide is the final one where they have their wish list to what they would like to do in near-term and long-term. WiFi features in all the scenarios except for the rural case (as expected). Anyway, here is the video:



You can download the slides from Slideshare here.

Sunday, 14 September 2014

Airvana's OneCell™ with C-RAN and Super-cell

Airvana recently announced its OneCell™ system was named the winner in the “In-Building Wireless – Small Cell, Wi-Fi, LAN” category of CTIA’s annual Emerging Technology (E-Tech) Awards competition. I remember back in June, it received a lot of praise for this product. So what exactly is so unique in this OneCell™.

From their press release back in June:

Based on cloud RAN principles, the OneCell system consists of a Baseband Controller and multiple Radio Points. Together they form a single "super" cell that delivers consistently high quality LTE service across indoor spaces ranging from 50,000 to 1,000,000 square feet without handovers or inter-cell interference issues. OneCell supports plug-and-play deployment over standard Ethernet cabling and switches, eliminating the need for proprietary networks or expensive optical links. Further, its unique small cell cloud RAN architecture dramatically simplifies radio frequency planning and integration with wireless macro networks.

There is a mention of C-RAN (though I have had discussion where this claims have been disputed), Super-cell and is pitched towards enterprises.

Airvana's website has a good picture explaining how a super-cell gets rid of interference on cell edges as all the cells work together as a single large cell.

In fact the scheduler can cleverly assign the same resource blocks to different users and hence increase capacity.

Below is a video explaining their solution in more details:

Wednesday, 3 September 2014

Wi-Fi Evolution and its Role in 5G Networks

Picture Source: EE Times Asia
'5G' is becoming a  very popular term. Every other day there is some sort of a press release about some company working on a 5G technology. Those who follow my blogs will nevertheless know that I think there will be an intermediate stage which we term as 4.5G where Wi-Fi and Cellular will work together, in harmony.

While the Release-12 of 3GPP standards have been focussing on many areas, the headline grabbing technology has been Carrier Aggregation (CA). 3 bands CA in the downlink and 2 band CA in the uplink is expected to become a norm. New UE categories 9 and 10 have been defined for this.


While 802.11n, 802.11ac and 802.11ad is now starting to gain popularity, discussion about the next generation of Wi-Fi standards, 802.11ax has just begun.

I recently came across an interesting presentation from Ericsson on this topic and I think it may be worth watching. The presentation is available here and video of the presentation is embedded below:


There are lots of other talks and presentations from the Johannesberg Summit 2014 that is available here.