Friday, 15 September 2017

Small Cell Infrastructure in Denver

The City and County of Denver (Colorado, USA) is receiving growing numbers of requests from wireless providers and wireless infrastructure companies to construct small cell facilities in the public right of way. As a result Denver Public Works has created a small publication about how they are working with companies to bring small cell infrastructure to the city. Its available here.

Here is one of the points from that publication:

9. Can the City limit or standardize Small Cell infrastructure?
As mentioned above, the City is currently exploring its policies and ordinances for Small Cell infrastructure within the parameters of Federal and State law. Under current law, it is not clear how the City can restrict height, design, or location (unless conflicting) of Small Cell infrastructure. However, as the City as a whole considers new polices and rulemaking, the City Public Works Department is having success in coordinating expectations and recommendations through enhanced communication efforts at the outset of each company’s program. So far each applicant has been receptive to:
  • Considering standardizing pole design elements, color, location, etc. to meet intent and character of existing infrastructure in the public right of way.
  • Limiting pole heights to match existing street lighting and other poles in the public right of way.
  • Generally avoiding placing poles adjacent to parks and historical places.
  • Encouraging pole and equipment designs that enclose as much equipment as possible to minimize visual impact.
  • Co-locating equipment onto existing infrastructure wherever feasible.
  • Installing consistent infrastructure that does not discriminate based on neighborhood type, demographic, or character.
  • Exploring new concepts in combining equipment from multiple companies into specially designed poles.
Public Works has placed top priortiy in coodinating design elements for proposed Small Cell infrastructure, and how companies should maximize aesthetics while minimizing congestion of the public right of way. Below are several examples of Small Cell equipment recently constructed in Denver.


You can download the document from here

Saturday, 9 September 2017

Small Cells World Summit 2017 Summary


I realised that I never got round to writing a summary post for Small Cells World Summit 2017. In fact I was waiting for summaries for various publications before writing a post but there was much less coverage this year.

Having said that, there were reasonable number of operators and most major vendors present. Small cells have sort of gone mainstream from their niche as many operators are now talking of small cells for 5G (mainly higher frequencies).

Anyway, here are some links with what I found interesting that you can explore further.

Here are some things ThinkSmallCell reported. Full report here:

SCWS, now in its 9th year, remains a regular feature of the small cell calendar. Now a two day conference, attendance was lower than some years ago but stable with noticeably more system integrators/installers actively participating. There was a little more focus on business enablers rather than technology this year, addressing deployment issues and neutral host opportunities for enterprise, urban and rural sectors.
...
The scope of SCWS is intended to embrace all of Small Cells, DAS and (Public Access) Wi-Fi. We saw one or two more DAS vendors participate but there was relatively little public Wi-Fi content. Perhaps that reflects the limited interest for that in Europe, as we saw at the recent Wireless Broadband Congress. The program included a few keynote speakers from operators (EE, O2, ATT, KDDI, Softbank) and some industry verticals (AEG, which operates the O2 dome and other stadiums; Grange Hotels etc.)       

Many mature small cell products are available today for both 3G and LTE. Form factors continue to shrink, software is becoming further automated and refined. The backhaul conference stream has been dropped with CCS now the most prominent independent small cell backhaul vendor.
...
The event provides an excellent opportunity to meet and reconnect with industry players, both old and new. The emphasis and participation has evolved over the years, but it remains a key focal point to assess the current state of play for the industry.

Here are some things The Mobile Network reported. Full report here:

The day before the Summit started Nokia assembled a few journalists in a meeting room and gave them a portfolio update. Of note in this was the revelation that the company will be shipping tens of thousands, in fact more than 50 thousand, of its Mini Macro cell sites to Sprint. This is on top of another wide scale roll out of the boxes – which are 2x20W sites in a 5 litre box – in China and Japan where the vendor expects to ship another 40,000. There are 3,000 headed to Brazil, as well, to be deployed as an underlay under Ericsson macro cells.
...
One notable aspect of the event was the amount of talk about using small cells in rural, in dense indoor and in other hard to reach areas. Mansoor Hanif spoke of some of the work BT is looking at to enable it to spread coverage to hard to reach areas. There is a real range of work, best summed up in this picture.

Of note is its work with TIP, where it hopes to be able to plug in open base stations as part of its Kuha community-run small cells programme – as per its project on the island of Harris supported by Nokia at the moment. With Lime Microsystems it is delivering a software defined radio base to Open Source, and hopes to attract developers to build applications on top of the Lime SDR platform. Hanif wants to move the cycle for introducing a new feature into a network from months to weeks – but he added that he doesn’t think any operator has the skills to manage that internally – hence the move to Open Source.
...
KDDI’s Fumio Watanabe presented some findings from the operators trials of mobile mmWave systems. The operator’s field trial use 40GHz and 60GHz bands, with a user moving between different bands and being “handed over” between access points. This sort of mobility requires dual interband connectivity and multi-site CoMP to handle the mobility between different sites and bands as a user goes out of line of site of an access point.

It may also require some architecture shifts Watanabe said, including the likes of ICN and MEC.
...
Backhaul provider CCS has a couple of things going on. First, it is involved as the backhaul provider to Telefonica O2’s deployment of outdoor WiFi and cellular small cells in the City of London. Steve Greaves, CEO, said that the company will support 450 small cells and 150 WiFi access points by siting its backhaul nodes at 30 Virgin media fibre points – with each backhaul node supporting 3-5 WiFi access points. The backhaul nodes are providing 1.2Gbps capacities at 24/26/28 GHz bands.

Greaves is also enthused by an upcoming product launch from CCS, as the company enters the 60GHz band with a 10Gbps product. Greaves says that CCS will go beyond products from the likes of Siklu, by modifying the basic WiGig chip that providers currently use, to add tighter carrier grade SynchE 1588, and greater interference control. The product will not be available until early 2018, he added.

Another interesting aspect of the City of London deployment – the concession model between the City of London and Telefonica – means that Telefonica must host other operators’ small cells within the deployment if asked. But these may not be on the same pole as Telefonica’s small cells, given there is a limit of two boxes per pole. From a backhaul perspective – that obviously introduces more complexity – as Telefonica must introduce a V-LAN for each operator, with different QoS.

Virgin Media Business, by the way, has 100,000 cabinets in London alone, and wants to use them to act as potential hosts for small cells, by adding a small pole to the cabinet, said its adviser Paul Coffey. The company is also looking at enabling neutral host model using its street infrastructure. Its wholesale business supplying backhaul to the UK’s operators already runs to £150 million per year, Coffey said.

Related Posts:

Saturday, 2 September 2017

Ericsson Radio Dot: Evolution and Technical information


Its been nearly 4 years since I blogged about Ericsson's Radio Dot. Ericsson announced Multi-operator Radio Dot Solution this week. As per the press release:

Ericsson has launched three new scalable small cell solutions designed to help expand the small cell market and meet the growing demand for better mobile coverage and capacity while preparing networks for 5G and the Internet of Things (IoT) applications: the Multi-Operator Dot and the Multi-Dot Enclosure for indoor deployments; and the Strand-Mount Unit for outdoor micro radios.

The Multi-Operator Dot solution delivers a set of Radio Dots that can be shared between multiple operators, with one operator managing the system while others provide radio frequency signals – similar to an active distributed antenna system (DAS). This new architecture allows up to four operators to broadcast over a single Dot solution; combining the multi-operator benefits of an active DAS solution with the performance, agility and cost-effective design of the Radio Dot System.

As its name suggests, the Multi-Dot Enclosure combines multiple Dots in a single enclosure. The enclosure has a minimal impact on building aesthetics, is useful for multi-operator deployments, and presents a cost-savings option in buildings that charge per box deployed.

The Strand-Mount Unit for outdoor micro radios makes it easier to install the radios on the existing grid, hung on aerial coax, fiber, or electricity cables. Aerial-strand deployments are critical for scaling outdoor small cells and can be deployed for both single and multi-operator usage. Ericsson’s new Strand-Mount Unit can support up to four micro radios, enabling multiple operators to utilize the same mount for cost-efficient deployments. The Strand-Mount Unit delivers superior outdoor coverage with zero footprint.


Just in case you were wondering what exactly Ericsson Radio Dot is, the specs can be seen in the picture above.

According to Fierce Wireless:

The most significant element of the announcement is the multioperator version of the Radio Dot, according to Ed Gubbins, senior analyst on the Global Telecom Technology & Software team at GlobalData.

One of the bigger hurdles to penetrating enterprises (which is what the Radio Dot was designed for) has been that enterprises often have multioperator needs—because enterprise inhabitants typically bring their own personal devices to work and have their own operators. The creation of a multioperator Dot is overdue and gives Ericsson a leg up over rivals like SpiderCloud (now Corning), which have single-operator solutions, Gubbins told FierceWirelessTech.

That said, there will still be challenges in penetrating enterprises, even with multioperator solutions. “Getting operators and enterprises to agree on using the same vendor and the same solution on a case-by-case basis isn’t necessarily quick, easy or easily scalable,” he said.

The technologies Ericsson is using to help enable multioperator functionality (MORAN & MOCN) have been around for quite a while, as has the Radio Dot itself. “So the fact that it’s taken years to see a multioperator Radio Dot, despite how long one has been technologically possible to develop, gives some indication that this isn’t perceived as a silver bullet by any means,” he said.

However, the fact that Ericsson is presenting more than one model for multioperator deployment is a good thing; operator and enterprise sentiments will vary, so having some flexibility in this area should help, he added.


Just in case you were wondering, the different options for Mobile Network Sharing as as shown above.

A presentation from Ericsson detailing the new releease and their Small Cells portfolio in general is embedded below.



The Mobile Network magazine has some more info on this new products and comparison with other multi-operator deployments:

Unlike, say, the Nokia FlexiZone or SpiderCloud E-RAN  small cell designs, Radio Dots are not in themselves miniature base stations. Rather they are distributed radio heads attached to a centralised “feeder” baseband unit, mediated through an indoor remote unit (IRU). 

What Ericsson has announced is the ability to support multi-operator service in three ways.

First – parallel deployments with each operator using its own dedicated baseband, IRU and Dots. These Dots can be housed in the same enclosures (the new enclosures known as the multi-dot bracket) to tidy things up a bit.

Secondly – a multi-operator deployment using a shared baseband and IRU, over the same network of distributed radio heads, using MORAN (Multi Operator Radio Access Network) or MOCN (Multi Operator Core Network) network sharing capabilities.

Thirdly, a multi-operator Dot solution where operators provide multiple RF sources to the same Dot system. They do this by feeding baseband capacity to a new access unit from Ericsson, the RF Access Unit (RAU). This new RAU can support three 2×2 MIMO RF inputs, and can be connected on the other side to four IRUs, which then feed the shared Dot remote radioheads.

In both the second and third options, one operator remains in overall control of the deployment.

...

Ericsson’s Dot was initially designed as a single operator system, as was SpiderCloud’s competitive E-RAN. Where once SpiderCloud once made a virtue of its single-operator necessity – stating that an operator would gain competitive advantage by being the “best” carrier within a given office block or campus, it has in the past couple of years taken steps to add multi-operator capability – by adding support for more carriers,  LAA and CBRS models.

Another small cell vendor, ip.access, has also gone down the multi-operator, or neutral host route. Ip.access’ Viper platform combines multi operator access points with a gateway node that can be deployed as a virtual instance that links to separate operator core networks.

Huawei recently expanded band support for its LampSite product – probably the most similar product in terms of architectural design to the Radio Dot – and its aim was specifically to increase support for multi-operator deployments.

Although Ericsson claimed at launch that its dual band Dot could enable a multi-operator deployment, it clearly needed to take additional steps to really enable multi-operator models. One approach, as we have seen, is simply to make it a bit easier to deploy two or more instances of everything in the architecture. That seems like a hard model to scale economically, apart from in the biggest sites, perhaps. The other approaches either a) require the implementation of a new element (the RAU) or b) limits the number of multiple operators to two. 


Finally, embedded below is a video describing the Radio Dot in more technical detail for anyone interested. In case it does not automatically skip to 26.11 mins, please do it yourself



Ericsson is running a webinar on this topic on 27th September. Details here.

Saturday, 26 August 2017

ZTE's 4G / 5G Street Lights


While we are on the subject of street lights and lamp posts, I thought it may be worth mentioning about ZTE's BluePillar Streetlamp solution that it announced back in 2016:

An integrated streetlamp, charging pillar, base transceiver station (BTS) and smart city information solution, BluePillar enables a traditional streetlamp pillar to double as a 4G/5G BTS, or a charging point for electric vehicles. The solution can also collect local data on weather, environment, transportation and security while its large outdoor LED screen can be used to display information and advertising.

The BluePillar solution consists of ZTE’s BlueBox charging pillar, 4G iMacro base station, intelligent controller and intelligent streetlamp, all fully integrated into one product. It makes full use of a streetlamp pillar and integrates seamlessly into the surrounding environment, which could not only solve the difficulty in siting 4G networks, but also assure Wi-Fi construction, environment monitoring, security management and data collection in hotspots. It also offers direct outdoor advertising opportunities, as well as the display of municipal information and other value-added services at the same time. This solution could reduce the unit cost and promote the business density of each site, which could help operators acquire sites whilst saving land, electricity and other resources. Local governments, operators, everyday citizens and electric car owners all stand to benefit from this solution. For example operators could expand their business scope, and make the transition from traditional telecoms operation to the comprehensive operation of data services in cities.

The innovative integration of the solution, including the BTS, streetlamp and charging pillar, coupled with its ability to charge electric vehicles makes this a convenient solution for telecoms tower companies. ZTE's BluePillar solution could solve the challenges of Internet access on roads and in communities, as well as making streetlamps intelligently connected via information exchanged through its BTS.

Additionally:

Besides street lighting ZTE BluePillar is an integrated part of smart city. The system supports security surveillance, real-time information collection on the environment, real-time monitoring of the assets/special crowd with RFID .Through the LCD, important information and advertisement can be displayed which will bring benefit to the citizens as well as operators. RRU and WIFI equipment can be installed with BluePillar, citizen will be facilitated with WIFI services. Nowadays people have concern about air pollution and prefer clean transportation, such as Electrical Vehicles .However, due to limited space, lack of charging piles becomes an vital factor hinders the popularity of EV. Integrated with AC charging piles, BulePillar solution can save space and be an ideal method for municipal department to spread EV.


According to the ZTE magazine:

ZTE has deployed its IoT solutions in over 140 cities in 40 countries globally. She stated that a wide variety of solutions using smart meters have helped optimise city infrastructure with smart street lighting, parking as well as water and air monitoring Some examples include the deployment of 20 thousand smart street lamps in Paris’ smart city project: the City of Light. These smart street lamps are outfitted with sensors that help manage its energy consumption and maintenance optimisation.

To help alleviate traffic jams in congested cities, ZTE has smart parking solutions that notify users where they can park their vehicle without having to search for hours on end for parking spots. With its smart building and environmental monitoring, building managers would be able to better manage power distribution within the building.

I could not find any information about the 4G / 5G solution being trialed anywhere but I am sure it probably is.

Also, it seems that this Streetlight is developed by another Chinese company called Shanghai Sansi Technology Co.,Ltd. See here. More info also on their Youtube channel here.

Related Posts:

Saturday, 19 August 2017

KDDI to test 5G with base stations built in Street Lights

Street lamp incorporating the base station function in consideration of the landscape - by the Japan External Trade Organization (JETRO)

My earlier posts with street lighting and lampposts were mainly with Philips (see here and here) and one detailed one from EE (via Andy Sutton)

In fact the picture above reminded me of this tweet:


Anyway, the new article says (translated by Google translate from Japanese):
In experiments, we used a street lamp that incorporates the base station function inside the pillar so that the antenna and the radio are not noticeable. We set up one in the parking lot adjacent to the municipal wreckage field in Yeomachiro and investigate tourist reactions on the landscape and the reach of the radio waves. The period is one year from October this year. Since the 5G base station has not yet been downsized, experiments predict the radio range using the current 4G base station.
So from what I understand (news sites here and here):

  • KDDI will be testing initially using 4G because 5G base stations are still quite big. It looks like a small cell but could be an RRH as well
  • This experiment will start in October and last a year
  • As it mentions relay, I am assuming in-band backhaul.
  • As its on a sightseeing spot, they want to see how people react to this
  • They will also examine the impacts of weather, terrain and look at maintenance issues as well.
  • The intention is to roll it out commercially by 2020


Monday, 14 August 2017

T-Mobile USA Small Cells - backhauled via dark fiber

Picture Source: Reddit

Picked this one up from Wireless Week (emphasis mine):
Speaking at the Wells Fargo 5G Forum this week, T-Mobile VP of Radio Network Technology and Strategy Karri Kuoppamaki said the Un-carrier carefully considered its options before settling on a small cell strategy that utilizes dark fiber for densification. Kuoppamaki explained T-Mobile works with a number of partners who provide the fiber, real estate, and manpower for the build outs while the Un-carrier supplies the equipment and facilitates municipal dialogs. The result is an overall cost structure that has been whittled down to a “manageable level,” he said. 
“We work together in deploying those small cells. This strategy has worked for us really, really well,” Kuoppamaki commented. “Ultimately small cell deployments, or successful small cell deployments, depend on the cost structure, especially the backhaul piece. If you can do that by partnering up with the right people, and bring that cost down a fraction of the cost of a macro then it makes sense.” 
According to Kuoppamaki, T-Mobile currently has about 15,000 small cells today, including 13,000 DAS nodes. The Un-carrier is on track to add “several thousand” more by the end of 2017, and has another 25,000 in the pipeline for the next few years, he added.
While fiber is a great strategy in the long run, especially for densification and 5G, it drives the initial cost up. Its not a great strategy for operators who may be more interested in deploying small cells for coverage mainly.

In earlier posts, I have argued for in-band backhauling (IBBH). A similar concept by the name of self-backhauling is used in 5G. In another post we also looked at Sprint MagicBox which uses similar approach to improve coverage and capacity. The main advantage of this approach is quicker deployment at a far lower cost. Backhaul can always be improved after initial deployments once coverage obligations are met.


Anyway, finally coming back to the T-Mobile small cells, here is a much more detailed picture from Omar Masry's slide-deck.

Tuesday, 8 August 2017

Exploding Femtocells: How Testing plays an important role


The Register pointed out a while back that some of Vodafone's Sure Signal Femtocells (designed by Alcatel-Lucent) are exploding.
Vodafone says that anxious customers of its home femtocell box are safe, despite experiencing continuing brownouts. Although Vodafone is replacing the Alcatel-made units on request, it has declined to carry out a full recall.
Vodafone's user forums have a lot of info and pictures. The one from which I took the above picture says:
The failure was announced by a loud bang, a flash and the tripping of the power circuit.
Luckily there has been no serious accidents but it is enough to highlight the importance of all the different kind of testing that is done for all different kinds of devices.


This picture above, even though highlights the testing for mobile devices, is not very different to the steps required or testing small cells.

Due to the pressures of delivering more is shorter duration's, it can sometimes be a challenge to finish all of these to the highest possible standards. In any case, if its not done in the right way, the end results are visible soon enough, once it goes live.

Sunday, 23 July 2017

Rural Small Cells: An end user story


At the end of a recent seminar on small cells (without mentioning any details) someone from the organising team asked me (as they know me well), "we keep on hearing that small cells can make a huge difference but when will it start making that difference?". I am glad to say that I can share one such video that shows how small cells are making huge differences.

I am cross posting this video from Parallel Wireless Blog. This is a story of a couple, who are both retired doctors based in a village near Halifax in England, UK.


There are many other similar stories that we have come across, not just in UK but many other countries where rural small cells are making huge differences in communities by not only providing connectivity but also by making quality of life much better.

According to this ITU report, 53% of the world’s population is still offline, with the majority located in Africa and Asia-Pacific. This means there is still a lot of work that needs to be done to #ConnectTheUnconnected

*Full Disclosure: I work for Parallel Wireless as a Senior Director, Strategic Marketing. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Monday, 17 July 2017

AeroMobile Equips 100th 3.5G Connected Aircraft powered by ip.access

Picture Source: EX-YU Aviation News

AeroMobile provides connectivity to over 500 planes and 100 of them are now 3.5G connected. This milestone was announced by their parent company Panasonic recently. IP.Access also celebrated their 10 years partnership with AeroMobile recently.

Note that the picture above is from a slightly older technology as it shows support for Edge while the newer technology supports HSDPA. It basically shows how the in-flight connectivity works.

As your mobile is roaming via satellite connectivity, most operators will charge you a premium for the service. From UK, you are looking at 50 pence per text message and £5 per MB, etc. Hopefully someday when the wholesale satellite connectivity costs will come down, you might see more people using this service.

On the other hand, in-flight Wi-Fi is comparably cheaper but not very much. Last week I used Virgin Atlantic to travel to/from USA; the in-flight Wi-Fi costs were:
WiFi light for just £4.99 and you'll have 40MB of data, ideal for those who want to chat to friends, update their social media or spend a little time browsing. If you want to spend more time online, WiFi max for £14.99 includes 150MB of data.
Hopefully in the next few years, these costs will come down.

Thursday, 6 July 2017

Small Cells are growing in India

Its been a long time since I looked at small cells (femtocells) in India. Things have changed significantly in these last 8 years. India now has second highest number of mobile phone users (1.2 billion), just after China. Free and cheap data has given rise to consumers who want to do more on their phones than just call and WhatsApp.
I recently came across a presentation by Paul Senior, Airspan in UK Spectrum Policy Forum workshop on Spectrum Sharing in 3.8 - 4.2GHz Band. This presentation provides interesting insight into Reliance Jio Small cells deployment and also provides much more details of the Sprint MagicBox.

The presentation is embedded below: