Sunday, 28 May 2017

Small Cell Forum Awards 2017 Winners


The Small Cells Forum (SCF) Awards 2017 were recently held as part of Small Cells World Summit. The Small Cell Industry Awards are a recognized badge of excellence and innovation with a panel of impartial judges – comprised of analysts, journalists and industry experts – ensure the independence and quality of the awards. Its one of the few awards that I really respect for its impartiality.

The award nominees can be viewed here and the winners are here. The photographs are available here. I have covered some of the winners as part of this blog so I am listing those posts below.

Parallel Wireless & Gilat Parallel Wireless and Gilat Connecting the Unconnected in the Outback - I wrote this post 'Small Cells to help connect Australian Outback'. There is a very good video, unfortunately cant be embedded on this news item here.

Parallel Wireless Removing Deployment Constraints of Small Cell vRAN and 5G HetNets - I have not directly covered this topic, but will do soon. This post from last year 'HetNets On The Bus' gives an idea on how the HetNet Gateway (HNG) removes deployment constraints and future proof the network. Interested readers can find more detailed info on Parallel Wireless website here.

Vodafone CrowdCell: Using Macro Radio Network to Backhaul Open-Access Small Cells - I have covered this as part of 'Small Cells at Mobile World Congress 2017' and earlier 'Vehicular CrowdCell or Vehicular Small Cell and the 5G plan'

BT & EE EE Air Mast Using Small Cells - This is my favourite as I was personally involved in this activity. I have two posts on this one. The first one is 'Flying Small Cells are here...' and the second one is 'Connecting Rural Scotland using Airmasts and Droneways'. I have to admit that this is a very ambitious project, especially the second one.

*Full Disclosure: I work for Parallel Wireless as a Solutions Architect. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Thursday, 18 May 2017

Loon powered emergency networks for flood affected Peru


In the past, when earthquake and floods used to take out mobile connectivity, satellite used to be the only way forward. See here for instance for use of satellite connectivity in Nepal and Japan. I really like the Network in a backpack from Vodafone picture in that post.

Having said that, things have moved on in the last few years. In my earlier post I discussed about Telefonica's network in a box that weighs just 40 grams. This can be deployed in conjunction with a drone or a Helikite and you have a self-contained coverage. EE is taking this further and plans to connect Scotland using Airmasts and Droneways.


In the recent floods in Peru, Telefonica worked with Google Loon team to to re-connect the service and re-establish mobile communications, which are particularly crucial in such dire circumstances. According to their blog:
Telefónica and Project Loon brought basic Internet connectivity across more than 40,000 Km2, providing over 160 GB worth of data –enough to send and receive roughly 30 million WhatsApp messages, or 2 million emails.
The Google Loon team have their own blog posts on this topic here and here.

The picture on the top is a modified picture from Project Loon that explains how the Loon's work. Fundamentally the working is sort of the same, regardless of the technology you use. As I explained in my other post here, when you use Helikites for example and create a mesh network its similar to the Loon's using laser for connectivity between them. All technologies need backhaul to connect to the outside world and access to connect to the end user.

Further reading:



Friday, 5 May 2017

Sprint's Magic Box


Is Sprint doing Small Cells? That's a question probably asked too many times. Back in January, their COO Günther Ottendorfer said the company’s small cell partners conducted a range of trials last year in order to determine fast and efficient methods to deploy small cells, a situation he said led to some misunderstandings in the market. However, he said those trials are largely behind the carrier and that he expects the carrier’s small cell efforts to expand this year.

“There was a learning process in 2016. We did a lot of trials in the beginning. We had some trials that led to misunderstandings, when you have a lot of boxes there because you were trialing different things, different—for example—transmission methods,” said Ottendorfer, Sprint’s chief operating officer for Technology, in a recent interview with FierceWireless. “But now we have streamlined the concepts and so I’m very confident that with streamlined and very elegant small cell solutions we will have a good rollout this year.”

They again mentioned about their small cells commitment at MWC. Finally this week, they announced the Magic Box.

Sprint has billed it as "World’s First All-Wireless Small Cell". This is a point where I would disagree with them, mainly for two reasons.The first being that for an all-wireless claim, they have to get wireless power to the small cell and secondly, this has already been done for a while. I have explained about In-band backhaul here and have provided examples of how Parallel Wireless has been using this for a while.

The Magic Box is made by Airspan and is 4G/LTE only in band 41 (2500 MHz TD-LTE). One of these units provide an average coverage of 30,000 square feet indoors and can benefit adjacent Sprint customers inside the building. The signal can also extend coverage 100 meters outside a building, benefiting customers in nearby buildings and improving street–level network performance. It does not use the closed subscriber group (CSG) feature hence anyone can camp on it and use it.


Sprint has a large amount of 2.5GHz spectrum available, as a result they are able to use dedicated spectrum for the Magic Box. This ensures that interference is kept to minimum. They also announced the availability of HPUE that will allow this band reach to improve. See my blog post here for details.

“It’s a far cry from just a repeater,” he said, explaining that it improves the efficiency of the network as long as it has a good connection to the macro cell. It will work with any Sprint phones using 2.5 GHz. The backhaul channel uses 2.5 GHz or 1.9 GHz, but ideally it would use 2.5 GHz because that offers a lot more capacity.

The Magic Box includes self-organizing network (SON) capabilities and operates on its own channel in Sprint’s spectrum, allowing it to decrease the noise level and increase the capacity of the overall system, which is the big difference from repeaters, explained Sprint Technology COO Guenther Ottendorfer.

Some of the details I couldn't find but hopefully some of the readers would know and can answer are:
  • Whats the power output of these small cells?
  • I am assuming they will support VoLTE calling for voice - even though generally that feature is transparent to small cells?
  • Does the small cell radiate a single 20MHz channel?
  • Does the backhaul do carrier aggregation?

Further Reading: