Thursday, 12 September 2019

Airspan Small Cells and Macrocells Portfolio, including 5G


Back in April, a presentation from Airspan showed that they have shipped nearly 500k small cells. Sprint has nearly 300k MagicBoxes while Jio has around 120k small cells.


As you can see above, Airspan has a range of outdoor small cells and as shown below, a wide range of indoor small cells.


Airspan recently announced that it has partnered with Rakuten, the newest MNO in Japan, to bring comprehensive 4G and 5G solutions to the world’s first fully virtualized cloud-native mobile network. The announcement said:

Airspan’s Air5G OpenRange28 mmWave platform in 28GHz will deliver ultra-high capacity to Rakuten Mobile with record time-to-market, enabling unprecedented monetization opportunities. Airspan’s open RAN platforms will provide Rakuten Mobile the flexibility to disrupt the economics of traditional network operators and lay the foundation for transformational 5G architectures. With over half a million systems deployed globally, Airspan brings its proven disruptive economics to the fully virtualized Rakuten Mobile network.


Airspan’s mmWave virtualized Air5G OpenRange28 platform utilizes Qualcomm’s FSM100xx 5G chipset and supports open RAN architectures, seamlessly connecting to Rakuten Mobile’s virtualized BBU to deliver the world’s most advanced open interface virtualized RAN solution.  The OpenRange28 mmWave platform supports multiple functional splits for the widest possible set of deployment options, ensuring Rakuten Mobile customers benefit from the highest level of efficiency and the best user experience in Japan.

Airspan's 5G products can be viewed here.

With so many innovators working with Rakuten, it would be interesting to see their 4G & 5G network rollout. Looking forward to some big announcements at MWC next year.

Related Posts:

Monday, 2 September 2019

5G Small Cells on 'Smart Poles' in Denver


There was a good report in FierceWireless about Verizon installing 5G in Denver using special ‘smart poles’. We have covered this topic of smart lampposts and poles extensively for many different countries including India, UK, Portugal, China and even Japan.

The article states:

The Boulder, Colorado-based company Comptek Technologies has designed stand-alone poles to house wireless small cell equipment that is completely hidden within the poles. The City of Denver has approved the design of these Comptek City Poles, and Verizon is now deploying them in Denver for 4G and 5G small cell equipment.

In addition to Verizon, Comptek is also working in different parts of the country with all the other major wireless carriers either directly or through their deployment partners. For instance, Comptek is working closely with its customer Xcel Energy, which has an eight-state footprint. Xcel is helping carriers to deploy their small cells on the utility’s existing vertical infrastructure. And in some cases, Xcel is taking down existing light poles and replacing them with Comptek poles that combine small cell equipment along with a streetlight.

The company has a national agreement with Verizon. Besides Denver, Comptek is working with Verizon in other cities including Columbus, Cleveland and Cincinnati, Ohio; Anaheim, San Diego and Los Angeles, California; as well as Salt Lake City. In the Denver/Front Range area, the company has about 350 poles under contract. And across the U.S. it’s got contracts to erect about 1,000 poles by the end of 2019.

CityPoles' website here isn't updated with the latest info but the earlier press release stated 300 small cells in Denver.


Continuing from the article:

The poles are designed in modular sections. There’s a foundation, base cabinet, shroud, upper pole and top antenna section. They’re custom-designed to incorporate various wireless equipment configurations, cabling, power supplies and antennas. In addition to the physical pole itself, Comptek also provides electronics and environmental controls. The poles can support single or multiple carriers.

Jim Lockwood, CEO of Comptek said that for 5G, Ericsson’s mmWave equipment is mounted in a tri-sector format, meaning that the radios and antennas are integrated with each other and they’re mounted at the top of the pole in three panels that face in different directions. Representatives from Ericsson and Verizon could not verify the "tri-sector format" or provide any additional information about it.

Related info:

Related Posts:

Friday, 30 August 2019

Deutsche Telekom, Huber+Suhner are jointly developing 5G small cell antennas

According to Telekom press release:

Deutsche Telekom, Huber+Suhner are jointly developing 5G small cell antennas

Deutsche Telekom is now also preparing its network for the use of 5G small cell antennas. To do so, it is collaborating with Huber+Suhner, the specialist for electrical and optical connectivity. The Swiss company has developed five small cell antennas for Deutsche Telekom that support 4G and 5G frequencies. The Sencity Urban antennas cover the range of frequencies from 1.7 to 4.2 GHz. Small cells are small amplifiers for the mobile network. The data throughput can thus be systematically expanded in areas where many customers are on the move or surfing.

The new small cell antennas first operate in Deutsche Telekom’s 4G network. They can be upgraded to 5G in just a few simple steps. Sencity Urban antennas will be used for the first time in Kiel, Lüneburg, Osnabrück, Munich, Mülheim and other cities.

Small cells will play an increasingly important role in Deutsche Telekom’s network in the future. They are creating a significant increase in data capacity in their coverage area. This is currently up to an additional 150 MBit/s. The new types of Huber+Suhner antenna make it possible to increase quality further with what is referred to as the MIMO (Multiple Input Multiple Output) technology. Using this technology, several antennas provide higher data throughput – both at the transmitters and in the receiver.

“Small cell antennas are an important component of our expansion strategy. We can systematically cover squares and streets with the new antennas. This helps us create more capacity in the downtown areas and thus further optimize our network,” states Walter Goldenits, Telekom Deutschland’s CTO. “A big added value of our Swiss partner’s antennas is their flexible handling: we can convert the supply to 5G in a few easy steps.”

The small cell antennas made by Huber+Suhner will be installed on public telephone boxes, bus and streetcar shelters, walls, or on LED furniture. There are various types of antennas and housing, adapted to the various requirements. Omnidirectional antennas are used for market squares, for example, and directional antennas for narrow streets.

Small cells will be required in the future to provide urban areas with 4G and 5G. Combined with the conventional locations, the network can thus provide the necessary coverage and capacity to supply more and more wireless devices. The Sencity Urban antennas are very compact and can be easily installed in existing infrastructures. This saves space and enables future networks to perform at their best.

The press release is also available on Huber+Suhner site here.

Back in May, Huber+Suhner had already announced outdoor MIMO antennas for 5G Urban Deployments:

HUBER+SUHNER has developed small omnidirectional and directional antennas to maximise performance. The new SENCITY Urban 100 and 200 outdoor MIMO antennas cover both 4G and 5G high frequency ranges and are as compact as possible for discreet installation in different types of street furniture, such as bus shelters, poles or walls, depending on the location, thanks to various bracket mounting options.

Further details:



Related Posts:


Thursday, 15 August 2019

Small Cells and Neutral Host Networks

Back in January, techUK hosted a conference titled, 'Neutral Host Networks: Vision and Reality'. There were quite a few interesting presentations and they are available freely on their website. Here are some slides I found interesting. 

The first one was from Huawei where they talked about 'Neutral Host Models in 4G & 5G Architecture' and covered the Lampsite neutral hosting in detail. If you don't know about Lampsite, check out this earlier post on Huawei Lampsite 3.0 here.

Duncan Wall, Business Development Director, Arqiva talked about 'The benefits of neutral host networks in urban and rural environments - Progress toward that vision'. There were quite a few details on what Infrastructure could be shared and benefits of sharing, new tower proposition, street trends, etc.

I like the simple site design picture shown above. The shared cabinet can host 4 small cells (from 4 operators) and that can feed the shared antenna on top of the lamp post.

In addition, there are presentations from Real Wireless, LS Telecom, BAI Communications, LS Telecom, Disruptive Analysis & Opencell. All presentations available here.

Related Posts:


Tuesday, 23 July 2019

Dronecell - Turkcell's Flying Base Station


At the recent IEEE 5G Summit in Istanbul, Gülay Yardım, Head of 5G R&D and Radio Network, TURKCELL presented their vision on how Drones & Mobile Technology can work together for mutual benefits and what challenges need to be solved.

The picture above shows how the different components in the drone cell fit together. I also blogged about this in my post-MWC summary blog here.


Features and specifications of the dronecell above.

I also recorded this video below at MWC which gives an idea on how dronecell uses AI to analyze the footage in case of disaster and help with emergency assistance.



Related Posts:

Monday, 15 July 2019

Small Cell Forum Releases 5G FAPI API Specifications

SCF has announced the release of 5G FAPI: PHY API Specifications. In the press release titled 'Small Cell Forum Publishes Specification to Drive Unified 5G Open RAN', SCF announced:

5G FAPI Release provides common APIs to support interoperability between 5G small cell hardware components and software layers enabling interoperability and preventing fragmentation.

Small Cell Forum (SCF), the telecoms organization making mobile infrastructure solutions available to all, has published the PHY API for 5G to stimulate a competitive ecosystem for vendors of 5G small cell hardware, software and equipment. The PHY API provides an open and interoperable interface between the physical layer and the MAC layer. 3G and LTE versions are already used in most small cells today.

The specification has been developed through a successful collaboration of companies from across the small cell eco-system, including; Intel, Qualcomm Technologies, Inc., Airspan Networks and Picocom Technology.

5G FAPI is an initiative within the small cell industry to encourage competition and innovation among suppliers of platform hardware, platform software and application software by providing a common API around which suppliers of each component can compete. By doing this, SCF provides an interchangeability of parts ensuring that the system vendors can take advantage of the latest innovations in silicon and software with minimum barriers to entry, and the least amount of custom re-engineering.

Operators are looking for a radically different cost model for 5G networks, one that relies on interoperability and an open, competitive ecosystem. As networks are disaggregated, a critical interface is the fronthaul between a distributed unit (DU) for radio functions and a centralised unit (CU) for protocol stacks and baseband functions. Open specifications such as SCF’s FAPI will enable operators to mix and match protocol stacks, basebands and radios from different vendors, and realize the benefits of deploying disaggregated, virtualized RAN (vRAN) networks.

The Forum also maintains the widely adopted FAPI specifications for 3G and LTE, as well as networked FAPI (nFAPI) for LTE supporting a MAC/PHY functional split, a key enabler for virtualisation of higher layer base station functions. In 5G this split point was also identified by 3GPP and called split option 6.

The Forum’s motivation for defining nFAPI in LTE was to establish a scalable ecosystem with a converged approach to virtualization across multiple suppliers, and the continued adoption of NFV/SDN make this is even more crucial for 5G. As such, the Forum plans to expand 5G FAPI to operate across split option 6 as 5G nFAPI.

A video of presentation by Clare Somerville, Intel & 5G FAPI lead from Small Cells World is embedded below:


In an interview in The Mobile Network last December, Prabhakar Chitrapu, who chairs SCF’s TECH Group said:

“Split RAN/Small Cell architectures have seven options, as identified by 3GPP. Of these, 3GPP has focused on Option-2 (RLC-PDCP) and ORAN on Option-7.2 (PHY-PHY). Option-6 (PHY-MAC) is not being addressed by any of these organisations. SCF seeks to fill this gap.”

“The PHY-MAC interface is important for the industry because it is an interface that has been highly successful in the 4G world, where it is called FAPI and nFAPI. It is therefore considered very important that we extend these interface specifications for 5G, as 5G-FAPI and 5G-nFAPI."

“FAPI helps Equipment Vendors to mix PHY & MAC Software from different suppliers via this open FAPI interface. So, FAPI is an 'internal' interface.”

“5G-nFAPI (network FAPI) is a 'network' interface and is between a Distributed Unit and Centralised Unit  of a Split RAN/Small Cell network solution. An open specification of this interface (nFAPI) will help network architects by allowing them to mix distributed and central units from different vendors.”

ShareTechNote also provides some details about FAPI and nFAPI as described by Small Cell Forim here.

Related Documents from SCF:

Tuesday, 25 June 2019

KT 5G Skyship Search and Rescue Platform


Last year I wrote about KT's Skyship platform. I thought it may be worth revisiting now that the vision is slowly turning into reality. There were some videos that were recorded at MWC and immediately following it. All of them are embedded in the playlist below. They will give an idea of what KT is going to use the Skyship platform for.



A presentation by Riku Jäntti, Aalto University on PriMO-5G - Virtual Presence in Moving Objects through 5G also added some more details on the 5G Skyship search and rescue application. The presentation is available here.


Related Posts:



Sunday, 16 June 2019

Turkcell's Small Cell Strategy

Turkcell is one of the industry’s leaders in extending the traditional MNO model into new services, illustrated how the business case is strengthened by diversity, with small cell roadmaps which span multiple spectrum bands, form factors, vendors and deployment environments.

During Small Cells World Summit, Turkcell presented their Small cell strategy and case study.


As the tweet above says, they have 3 separate use cases for small cells:

  • VIP/business complaints & retention
  • General in building / enterprise
  • Outdoor capacity & coverage enhancement


Their strategy is to work with multiple vendors for different use cases. The strategy has clearly paid off as different small cells are working seamlessly with the macrocells indoors and outdoors.


Indoor Femtocell Trials with Airspan and Nokia has significantly improved user experience and throughput indoors.




Various deployments with Huawei Micro has been done to improve coverage and capacity outdoors, for voice and data.


Related Posts:



Tuesday, 4 June 2019

The Big Small Cell Update by iGR

iGR Wireless Research presented this webinar recently. The brief from the webinar says:

Small cells are becoming an increasingly important part of the 4G and 5G infrastructure, despite the issues with deployment. iGR is continually updating its extensive research on the small cell opportunity, including total addressable market, actual deployments and TCO.

This webinar provides an update on iGR’s view of the indoor, outdoor, CBRS, mmWave and sub 2.5 GHz small cells


There is a lot of useful information but I should mention this is very USA specific.

There is no direct link but you can register to watch the webinar recording here

Thursday, 30 May 2019

Synchronization for 5G - Requirements, Solutions & Architecture

Couple of months back, Oscilloquartz, an ADVA company, announced that BT is leveraging its high-capacity, future-proof Oscilloquartz synchronization technology to bring 4G coverage to previously underserved areas and begin the rollout of 5G services across the UK. Prior to this deployment, BT’s timing network was based purely on frequency synchronization. With the new solution, it can now distribute stable and accurate phase and time-of-day information, enabling BT to dramatically improve the use of its spectrum. The new synchronization network is built on the OSA 5430 and OSA 5440 and integrated with ADVA’s network management solution. The technology provides the sub-microsecond accuracy required for next-generation mobile applications together with hardware redundancy for unbeatable resilience.

At the Small Cell World Summit held earlier this month, Gil Biran's presentation outlined the key synchronization requirements and solutions for mobile networks in the era of 5G. Check out the slide deck embedded below to discover how longest holdover and highest precision can be achieved with the "industry's most comprehensive timing technology portfolio".



This video of OSA 5430, the first high-capacity grandmaster clock available on the market to support PTP, NTP and SyncE over multiple 10Gbit/s Ethernet interfaces is also worth a watch. It's also the first device of its kind to provide redundancy and protection.