Wednesday, 20 June 2018

Huawei's RuralStar: Taking the fight to low cost small cell vendors

Last year, Huawei announced their small cell / mini-macro product for rural and urban areas. The following is from their initial announcement:

Huawei’s RuralStar base station can reduce the time to recover the investment to less than five years, compared with more than ten years for traditional rural sites Zhang said. The new site cuts power consumption by 85 per cent and lowers total costs by 70 per cent, the company said.

The vendor is having discussions with a number of operators in Africa and Asia about deploying RuralStar sites. Zhang is optimistic there will be strong demand, but noted the new site won’t represent a large percentage of total base station production.

The Huawei executive said urban areas also face many challenges in deploying base stations including high rental fees, difficulty in finding appropriate sites and slow deployments, which can take at least one month.

To overcome these, Huawei developed PoleStar, which can be installed on lamp posts and a variety of other locations in a matter of hours. Zhang said operators can take advantage of more than 1 billion lamp posts, 10 million bus stops and 10 million phone booths around the world to deploy new base stations more cost effectively.

A PoleStar deployment in Thailand using existing traffic and light posts significantly reduced the site footprint, which led to a 66 per cent cut in rental costs. 


It soon became RuralStar 2.0:

Huawei released RuralStar2.0, an innovative site solution in terms of transmission, infrastructure, base station design, and energy. This solution addresses increasing demands for voice and data services from the unconnected and increases operator ROI for rural network deployment. This solution fulfills the following rural MBB requirements: 2G, 3G, or 4G rural MBB networks providing rates of over 10 Mbit/s at cell edges and cell coverage of 5 km; Extended 2G and 3G coverage at a maximum distance of 60 km from the nearest tower-mounted site, providing voice and data (over 1 Mbit/s at cell edges) services and cell coverage of 5 km.

In terms of transmission, RuralStar2.0 adopts non line of sight (NLOS) wireless backhaul, which eliminates rental costs of transmission equipment and significantly reduces OPEX compared with satellite or microwave transmission. NLOS wireless backhaul supports multi-hop backhaul, which allows for a maximum distance of over 60 km from the donor base station, extending network coverage. In terms of infrastructure, NLOS wireless backhaul switches high-rise towers used in traditional rural networks to low-rise poles, reducing site infrastructure costs by 70%. As for energy, low-power base stations and transmission equipment do not require diesel generators for power generation and require fewer solar panels and batteries, which slashes CAPEX by 70%. Using pure solar energy saves O&M costs, in turn greatly reducing OPEX.

Omnidirectional antennas are used to achieve targeted omnidirectional coverage in a single cell at low cost. For cells with insufficient coverage, innovative 90° high-gain antennas can be used to deploy the butterfly site solution. This solution reduces the number of sectors from three to two, the number of antennas and RRUs by 1/3, and total power consumption by 30% as well as the CAPEX and OPEX compared with traditional sites. For a given population in a target area, RuralStar2.0's innovations in these aspects reduce TCO by more than 50% compared with traditional site solutions.

RuralStar has been commercially deployed in many countries, including Ghana, Thailand, Algeria, and Nigeria. Mobile network coverage boosts local economic development and improves local people's lives.


At MWC, Huawei’s RuralStar solution has won GSMA’s "Best Mobile Innovation for Emerging Markets" award.

In Ghana, local villagers used to climb to rooftops and trees, or even ride a dozen kilometers to find telephone signals. RuralStar has addressed these issues. They can now use WhatsApp to communicate and share pictures at home. Transferring money and recharging call fees through Mobile Money have also become common in daily life.

RuralStar enables three transformations, transforming microwave or satellite transmission in traditional solutions to Relay, substituting simple poles for towers, and enabling a move from diesel generators for power supply to solar power. This shortens the return on investment (ROI) period for mobile communications in remote rural areas. Operators can then lower the threshold of profitability by 50%, which is a great help for emerging markets to bridge the digital divide.

There is also a user experience story from Ghana on a village that was transformed with the help of connectivity:

Over the past week, Afryea's friends were receiving more and more messages from her over WhatsApp - and all thanks to the installation of an amazing “wooden pole”.

Afryea is a teacher in a village located in a rural region of Ghana. Having had the privilege of studying in cities, Afryea is used to using WhatsApp, Snapchat and Instagram. However, she explains that it took her an inordinate amount of time to readjust to the life without these Apps after she returned to this village, as it rarely has any signal.

Afryea is now delighted to deliver the news to her friends that mobile services are becoming increasingly accessible for a surprisingly long list of devices in her village.

Nyakpoo, the village chief, explained to Afryea why people simply couldn't access the network: the nearest base station was more than 20 kilometers from here, so achieving signal reception was no easy task. Before the “wooden pole” base station was installed, the village chief himself often needed to ride his motorcycle a few miles to get closer to a base station in order to use Mobile Money.  "Since our village suffered from a lack of electricity and fibre optic cables, there was simply no other way to build a base station. I am amazed that all these issues can be solved with a simple piece of wood."
...

The RuralStar solution changes this. The solution uses a Relay based on 4G technology to realise data transmission, rather than expensive satellite or microwave. Relay transmission does not have the same line of sight (LOS) constraints, allowing a base station to be constructed on a simple wooden telegraph pole instead of a 30m dedicated tower. With low power consumption, RuralStar can be powered just by using six solar panels.

Afryea’s village was chosen as one of the first to implement RuralStar. The wooden pole to accommodate the base station is prepared locally in the village. The base station deployment was completed in just one week, with total costs reduced by around 70%, and the pole is now helping to deliver mobile services. Even with such a small population, the operator can expect to recoup the investment in just three years.


While I commend Huawei for developing a low cost solution for rural deployment, they are competing with several other small cell vendors competing for the same chunk of the market. It is also often of interest to the mobile operators to bring new vendors in rural areas where the requirement to meet KPIs is much lower. This way they can make sure that all the interfaces from their existing vendors are open and standards compliant too.

Finally, I have to mention that while the articles talks about power reduction, it is compared to the Huawei's macro products. Other small cell vendors may have even lower power and different innovations which may make them attractive for other scenarios.

Finally, Nokia has a similar solution for rural deployments. I blogged about the Nokia Kuha here.

Further Reading:

Sunday, 10 June 2018

Small Cells growing fast, just not in Europe


Small Cell Forum held a workshop in Beijing, China last month to gain an understanding of China’s perspective on densification on the path to 5G. Complete report is available here. From the report:

APAC leads the world in network densification, as is clear from recent market data and forecasts out to 2025. New deployments in South East Asia alone are set to be greater than the sum total of those in the rest of the world until 2025. APAC can be characterized as experiencing two phases of growth, with a small plateau from 2019-2021 as 5GNR small cells are being commercialized. Our survey of MNOs reveals that densification in APAC is primarily capacity driven, to ensure data services maintain their quality of experience as mobile traffic volumes continue to grow. CMRI (China Mobile Research Institute) predicted its data traffic would grow 8x from 2016-2020 and 119x from 2016-2030. Ericsson predicted 8x global growth from 2016-2022, and others cited Cisco VNI’s 7x global growth 2016-2021, dominated by APAC.

A summary presentation from the event is embedded at the end.

As per Mobile World Live's report from Small Cells World Summit last month in London:

Kicking off the event, David Orloff, chair of the Small Cell Forum said: “Small cells are integral for 5G, and the reality is that there are capacity needs, there are latency needs, and both of these aspects can be driven through integration with small cells.”

He observed: “Europe is lagging. We need a new mindset, we need to look at different ways on this – in the 5G era we do have densification needs in the entire global industry, and we need to work [out] solutions to ensure the framework is there and the foundations are there. We need to think differently.”

Speaking about the global rollout of small cell technology, he continued: “We see global synergies and global barriers, but we also see regional barriers that are delaying densification. A good example in the US is cell siting; in India there is a cost target that has to be met; in China there’s mindsets around operations; and in Europe there is a question around the business case and whether it is profitable to do densification.”

“Asia is cranking, North America is doing well, really preparing that framework and foundation and starting to deploy cells that are NR capable, so that we have a structure in place so that we can turn on 5G, working on mmWave. Europe is pretty far down.”

Notwithstanding this lag, Small Cell Forum forecasts an increase in the number of non-resident small cells deployed in Europe from 52,000 in 2017 to 310,000 in 2022. But mobile operator deployments are not the only game in town: enterprises are an important driving force due to quality of service and IoT requirements, and technologies including MulteFire and CBRS are easing the way for new players.


According to Crown Castle, in a report in Fierce Wireless:

The small cell market continues to expand, and Crown Castle’s Mike Kavanagh pointed to two big factors as evidence: Small cell buildouts are starting to happen in smaller, tier 2 markets, and some small cell locations are now serving more than one carrier.

Small cells are “a big part of every big carrier’s build,” he said. “It’s a good time to be in the space.”

In the early days of small cells half a dozen years ago, Kavanagh said that a major installation would cover 50 nodes in a city. Today that number is reaching 2,000—and in some dense markets it can grow to 7,000. “You’re utilizing small cells as a much bigger element of the network build,” he said. “You’ve got to have that tower layer. And you’ve got to have small cells.”

He said in some deployments Crown Castle is seeing 2 to 4 small cells per mile, and in some dense, urban areas that number grows to 7 to 12 per mile. Kavanagh, the company’s SVP of sales and its chief commercial officer, said that Verizon kicked off the push toward small cells, but today all of the nation’s largest wireless operators are embarking on major small cell deployments.

And a big driver of revenues for Crown Castle is the growing trend toward multitenant small cells, which Crown Castle calls “leasing up.” Essentially, Crown Castle typically builds a small cell for one carrier’s equipment, but increasingly the company is adding equipment for a second carrier to that location, thus deriving more revenues per small cell site. Such site sharing is typical in the macro tower business.


Finally, here is summary of presentation from SCF looking at APAC in detail with regards to drivers and barriers for densification.


Monday, 4 June 2018

Internet para todos: Telefonica and Parallel Wireless on a mission to connect 100 Million Unconnected


According to GSMA Intelligence report, 'The Mobile Economy Latin America and the Caribbean 2017':

Latin America has seen rapid growth in the number of mobile internet subscribers over recent years, with a total of nearly 350 million, registering growth of almost 10% since the start of 2016. Of these subscribers, more than two thirds connect to the internet via mobile broadband (3G or 4G) networks. As the importance of digital access and engagement increases, so this figure will continue to grow strongly, to reach about 420 million by 2020.



Despite the growth to date, only slightly more than half of the population currently ha0ve a mobile internet subscription, well below the developed market average of two thirds – though some lowerincome groups may connect using Wi-Fi only.

As a result, around 300 million people are digitally excluded and unable to enjoy the socioeconomic benefits that mobile internet can bring. By 2020, nearly two thirds of the population will be connected, still well behind the developed market average but in line with the global average. However, nearly 250 million people across the region will still be digitally excluded. There remain significant barriers to adoption, particularly for underserved population groups (rural, women, low income and youth).

Mobile internet penetration also varies significantly across the region. Chile had the highest penetration as at the end of 2016, with Argentina only slightly behind. In contrast, the Dominican Republic, Guatemala and Haiti have mobile internet penetration rates of one third or less (Cuba has among the lowest levels of mobile internet penetration globally, at 3% of the population). 

At MWC 2018, Telef贸nica announced “Internet para todos”, a collaborative project to connect the unconnected in Latin America. The Initiative is aimed at connecting the more than 100 million people in Latin America with no internet access. Telef贸nica also expanded its collaboration with Facebook on key technological and commercial innovations and collaboration with multiple stakeholders: rural operators, technology firms and regulators.

For those who are wondering what “Internet para todos” means, it means “Internet for all. Here is a good video on the initiative.



You can read all about it here. One of the vendors mentioned in this press release is Parallel Wireless (*). Their announcement on this is available here.

Embedded below is an indepth presentation on this topic by Patrick Lopez, VP, networks innovation at Telef贸nica.



And here is the video of above for anyone interested:


In the recent Small Cell Forum awards, 'Internet Para Todos' won the Social Impact award – Promoting Small Cells for Social/Economic/Environmental Development.



Hopefully we will see many more similar initiatives from other operators and TIP to connect the unconnected.

*Full Disclosure: I work for Parallel Wireless as a Senior Director in Strategic Marketing. This blog is maintained in my personal capacity and expresses my own views, not the views of my employer or anyone else. Anyone who knows me well would know this.

Monday, 28 May 2018

CCS MultiPoint-to-MultiPoint (MPtMP) mesh wins Small Cell Forum Award

Picture Source: Lightspeed via Twitter

CCS recently won Small Cell Forum award for "Excellence in Commercial Deployment (Urban) category" for  Ultra-Fast, Next-Generation Backhaul Network in London’s Square Mile.
David Chambers, ThinkSmallCell wrote an in-depth article on this topic last year (here) but since then lot more small cells and new WiFi points have come up. The picture on the top shows the CCS Metnet backhauling a Wi-Fi hotspot and a Nokia Flexizone small cell from O2. Only recently has CCS declared that the City of London project is up and running. As pointed out in the article:

  • CCS frames Metnet as the “world’s only self-organising 5G microwave backhaul”. Operating in the licensed 28GHz band, Metnet nodes are said to be unobtrusive and easy to install, with a wide field of view to minimise the need for radio unit installation.
  • The CCS launch declaration also indicated that Nokia Flexi Zone small cells are being used for 4G connectivity, which is then carried over Metnet. This appears to be the first time Nokia has been referenced in connection with the City contract, with previously identified partners including Cisco Systems as a provider of access points for the Wi-Fi network, and Virgin Media for delivering core fibre links.

While the London deployment is in 28GHz band, the solution is also available in other bands as follows:


A more detailed datasheet is available here.

Finally, here is a nice video of the London Square Mile Deployment


Thursday, 10 May 2018

Telstra continues Small Cells rollouts as part of Mobile Black Spots Program


Back in February, Telstra announced that they had turned on the 300th site as part of Federal Government’s Mobile Black Spots Program. The announcement said:

With hundreds of new base stations, small cells and site upgrades built over the last 6 months or scheduled around the country during the next 6 months, this financial year (FY18) is shaping up as a big year for expanding mobile coverage for regional Australia.

Then in March, it installed 4G small cells at 50 sites across the Melbourne CBD as part of a national three-year rollout of 1000 cells intended to boost capacity. As per RCR Wireless, Telstra’s small cell program stipulates the deployment of 1,000 small cells in metro and regional locations within the next three years. Some of these areas include Sydney, Brisbane, Adelaide and Perth.

Finally, another announcement in March indicated that Telstra is trialing small cells on Tasmania’s power poles to fix mobile black spots. As per this announcement:

We have announced we will trial the installation of small cell mobile technology on TasNetworks‘ electricity distribution infrastructure to help fill some of Tasmania’s mobile black spots.

The small cells trial will begin with a single site in the Weldborough area, where a small cell installed on TasNetworks infrastructure will provide new mobile voice and broadband coverage.

With the construction of a standard mobile base station typically costing several hundreds of thousands of dollars, small cells may allow us to deliver mobile coverage and capacity to smaller communities and areas where the construction of a mobile base station would otherwise be uneconomical.

The trial will test the feasibility of using existing TasNetwork power poles to improve mobile coverage in parts of Tasmania.

Related posts:

Sunday, 6 May 2018

Introductory 'Urban Small Cells' Video by Kathrein

Found a nice short introductory video on Urban Small Cells video by Kathrein. Its a topic discussed many times but I know of people asking for more info. Here it is:


Related Posts:

Sunday, 29 April 2018

Ericsson's 5G Radio Dot coming in 2019

One of the top 5 posts on this blog last year was one about Ericsson's Radio Dot so I thought its about time I write one about their 5G Radio Dot systems. If you have seen my tutorial on Macrocells & Small Cells, you will know that I don't necessarily agree that these are small cells but anyway lets leave that aside. Lets start with the slides that Ericsson shared:



While I wasn't allowed into any of the big vendors stands at MWC, it was good to see that all of them had put their MWC videos, demos, etc. online. See here. Good to see that Evan Kirstel managed to get us a nice picture of the Radio Dot.

Ericsson also has a page dedicated to Radio Dot here. The Facebook live video of the product below.


Finally, here is a short and sweet article from TMN magazine on this topic. Here is a short extract:

Ericsson has said that it will have a 5G compatible version of its Radio Dot System by 2019.

The company today “introduced” the 5G Radio Dot – a new line of its DAS-lite small cells. The new access points will be able to offer 2Gbps speeds, and will add band support across the 3-6GHz range that are targeted as a pioneer 5G band.
...
TMN : When is the expected actual release date (GA) for the 5G Dot?

Ljungberg: In line with general introduction of the 5G technology in the market in 2019.

This sort of gap between launch announcement and actual availability mirrors the original launch of the Radio Dot, which saw a 14 month gap between introduction and availability.

We will see it being rolled out next year.

Saturday, 14 April 2018

NTT Docomo's Underground LTE Small Cells with possibility to deploy 5G in future


NTT Docomo has announced that they have developed a prototype of manhole type base station for the first time in Japan. They will be used in locations where there is no other infrastructure available in vicinity to host base stations. The antenna is installed at a depth of 10 cm under the ground, with a fiber connection to the radio equipment and the power supply are drawn from the ground by the underground buried piping. The service area is about 90 m radius. 

Based on this, I am not sure if this is a complete small cell or just a remote radio head. I am inclined to think that this is a complete base station as its a standard LTE base station as per the specifications.


Manhole type base station specification (Sapporo verification station)
methodFDD-LTE
frequency1.5 GHz band (BAND 21)
Bandwidth15 MHz
MIMO compatible2 × 2 MIMO
Downlink modulation scheme256 QAM
Maximum ThroughputDL: 150 Mbps / UL: 37.5 Mbps
Size (buried part)70 cm × 70 cm × 70 cm
Device sizeAbout 29 cm × about 17 cm × about 7.5 cm
weightApproximately 15 kg
Specification of manhole cover (Sapporo Verification Bureau)
sizeDiameter 64.8 cm · thickness 5 cm
weightApproximately 27 kg
Load bearing capacity25 tons

The output power is not specified but base stations can easily fit within 15 kgs.

I have written about underground small cell here and here, which was about Swisscom, Ericsson & Kathrein trying it in Switzerland. I have also written about how the Japanese operator KDDI is trying to cover similar locations using lamp posts here. Its good to see Docomo trying something new.

As per the announcement, DoCoMo will work to improve the communication environment to areas where it was difficult to establish a base station, aiming for full-scale operation within the year 2018, and will continue to consider the application of future technologies to 5G in parallel.

From what I have heard, some antenna manufacturers are working on trying to convert the manhole cover in to an antenna. Its going to be a big challenge though.

Related Posts:

Sunday, 8 April 2018

Satellite Broadband for connecting Africa?


Came across this presentation by Avanti as part of iDate Digiworld Institute breakfast briefing. It again highlights the importance of satellite broadband as it can provide high speed connectivity regardless of the location.



This video on Project iMlango below shows what is being mentioned in the slides above


If interested, download the slides from techUK page here.

Tuesday, 20 March 2018

CrowdCell heads for TIP

Recently I wrote about Facebook's Telecom Infra Project (TIP) here. The following is from a recent announcement coinciding with MWC:

In our existing project groups, there are numerous TIP technologies that are moving from the lab stage to field and production trials. Each trial has operator sponsorship and includes key members of our technology ecosystem. Together, these TIP teams are working to validate technologies, share learnings, and accelerate toward commercialization at scale. Simultaneously, TIP members are contributing designs and specifications for new technologies and building new network tools.

Our TIP community is also growing and expanding in scope to address new challenges. Over the last month, TIP has added three new project groups and subgroups: Crowd Cell, Power and Connectivity, and Disaggregated Cell Site Gateways. At MWC, we are also announcing a new TIP community lab near BT’s Adastral Park campus in the UK and more than €100 million in venture capital funding available for infrastructure-focused startups participating in the TIP Ecosystem Acceleration Center (TEAC) in Germany.

In addition, we are excited to welcome some of TIP’s newest members: China Unicom, Sprint, and Telenor. They join more than 500 companies around the world that are active within TIP.
...

Crowd Cell is a new project group led by Vodafone. Crowd Cell is a concept based on relay architecture to help extend the range of existing cellular networks. Due to its plug-and-play design, Crowd Cell can be a rapid and low-cost small cell solution for traditional 4G networks. This project will focus on creating a Crowd Cell by leveraging generic hardware and open source designs for software to minimize costs through this “one design” flexible platform.
...


I blogged about the CrowdCell concept back in 2016 here. Then there were updates on the CrowdCell at MWC 2017 which I blogged here. This year, as the TIP announcement says, Vodafone is taking the CrowdCell to Telecom Infra Project. The following is from Vodafone's announcement:

Vodafone is developing new technologies designed to enable the cost-effective deployment of base stations in currently unconnected areas of Africa and India. The deployment will be supported by Vodafone’s new Open RAN technology and Facebook’s OpenCellular wireless access platform, which were developed within the Telecom Infra Project (TIP).

Open RAN technology significantly reduces the costs of rolling out networks in rural areas, fundamentally improving the economics of providing data and voice services to millions of unconnected people.  This new approach is expected to reduce the cost of radio network equipment by up to a third.

Vodafone also believes Open RAN technology will jump-start the establishment of an end-to-end industry of software and hardware vendors and integrators that will drive innovation, which is critical for achieving such a complex endeavour.

Picture Source: Michael Thelen

Vodafone has already conducted successful trials in India with two new vendors that have developed bespoke high-power base stations using software-defined radio and general purpose hardware based on Vodafone’s specifications and support. Wider scale trials are planned for later in 2018 where up to 200 sites will be equipped with the new technology. Tests are also currently ongoing in South Africa with TIP´s OpenCellular platform for 2G and 4G services.

This OpenCellular technology is being showcased at Vodafone’s booth at Mobile World Congress 2018.

Vodafone joined the TIP board in November 2017 and is a founding member and co-chair of TIP’s Open RAN project group, which aims to develop fully programmable RAN solutions based on general purpose processing hardware and disaggregated software. TIP is an engineering-focused initiative driven by operators, suppliers, integrators and startups to disaggregate the traditional network deployment approach.

The acceleration and expansion of this collaborative trend – embodied by TIP – will lead to significant change in the telecom industry and provide the ability to connect millions of people in rural communities for the first time.

Other TIP initiatives in which Vodafone is playing a major role include:
  • Vodafone is leading a TIP working group to develop a new, open version of CrowdCell. The award-winning CrowdCell technology – developed by Vodafone’s Networks Centre of Excellence in Madrid – makes networks more “localised” to deliver faster download speeds and enhance the network’s reliability. For more information: http://www.vodafone.com/content/index/what/technology-blog/crowdcell.html
  • Beyond radio, Vodafone and TIP are working together with Cumulus, Zeetta Networks and the University of Bristol’s High Performance Networks Group on evolving Voyager, the industry’s first white-box transponder and routing solution. Vodafone will demonstrate Voyager’s capabilities in a trial in April.
  • Vodafone is also founding a new TIP sub-group within the Open Optical & Packet Transport project group focused on transport on disaggregated cell site gateways. Similar to the gateways in radio, these would reduce the current vendor lock-in that operators face in transport networks. Cell site gateways will be also based on off-the-shelf hardware, open software and interfaces on a technology agnostic platform.

Here is a slide deck that I prepared and shared on 3G4G blog here. The part embedded below starts from Vodafone section.



Happy to hear your views on TIP or Vodafone's CrowdCell announcement. Please add them as comments.